Solve an assignment problem online

Fill in the cost matrix of an assignment problem and click on 'Solve'. The optimal assignment will be determined and a step by step explanation of the hungarian algorithm will be given.

Fill in the cost matrix (random cost matrix):

Size: 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10

Don't show the steps of the Hungarian algorithm
Maximize the total cost

This is the original cost matrix:

835891391612
303372337077
12126153
797579911657
58848311875
447099826575

Subtract row minima

We subtract the row minimum from each row:

7146792740(-12)
034234047(-30)
11115042(-1)
63596375041(-16)
50760231067(-8)
02655382131(-44)

Subtract column minima

We subtract the column minimum from each column:

7143792740
004234047
1185042
63566375041
50730231067
02355382131
(-3)

Cover all zeros with a minimum number of lines

There are 6 lines required to cover all zeros:

7143792740  x
004234047  x
1185042  x
63566375041  x
50730231067  x
02355382131  x

The optimal assignment

Because there are 6 lines required, the zeros cover an optimal assignment:

7143792740
004234047
1185042
63566375041
50730231067
02355382131

This corresponds to the following optimal assignment in the original cost matrix:

835891391612
303372337077
12126153
797579911657
58848311875
447099826575

The optimal value equals 114.