Solve an assignment problem online

Fill in the cost matrix of an assignment problem and click on 'Solve'. The optimal assignment will be determined and a step by step explanation of the hungarian algorithm will be given.

Fill in the cost matrix (random cost matrix):

Size: 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10

Don't show the steps of the Hungarian algorithm
Maximize the total cost

This is the original cost matrix:

4538989726
3299227988
5341819382
4281795640
4538382835

Subtract row minima

We subtract the row minimum from each row:

191272710(-26)
107705766(-22)
120405241(-41)
24139160(-40)
17101007(-28)

Subtract column minima

We subtract the column minimum from each column:

171272710
87705766
100405241
04139160
15101007
(-2)

Cover all zeros with a minimum number of lines

There are 5 lines required to cover all zeros:

171272710  x
87705766  x
100405241  x
04139160  x
15101007  x

The optimal assignment

Because there are 5 lines required, the zeros cover an optimal assignment:

171272710
87705766
100405241
04139160
15101007

This corresponds to the following optimal assignment in the original cost matrix:

4538989726
3299227988
5341819382
4281795640
4538382835

The optimal value equals 159.