Solve an assignment problem online

Fill in the cost matrix of an assignment problem and click on 'Solve'. The optimal assignment will be determined and a step by step explanation of the hungarian algorithm will be given.

Fill in the cost matrix (random cost matrix):

Size: 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10

Don't show the steps of the Hungarian algorithm
Maximize the total cost

This is the original cost matrix:

225868539
308582419
62249555
872158797
515789345

Subtract row minima

We subtract the row minimum from each row:

165207933(-6)
268178015(-4)
11744050(-5)
801451090(-7)
460738840(-5)

Subtract column minima

We subtract the column minimum from each column:

155207918
25817800
01744035
791451075
450738825
(-1)(-15)

Cover all zeros with a minimum number of lines

There are 5 lines required to cover all zeros:

155207918  x
25817800  x
01744035  x
791451075  x
450738825  x

The optimal assignment

Because there are 5 lines required, the zeros cover an optimal assignment:

155207918
25817800
01744035
791451075
450738825

This corresponds to the following optimal assignment in the original cost matrix:

225868539
308582419
62249555
872158797
515789345

The optimal value equals 43.