Logo HungarianAlgorithm.com

Solve an assignment problem online

Fill in the cost matrix of an assignment problem and click on 'Solve'. The optimal assignment will be determined and a step by step explanation of the hungarian algorithm will be given.

Fill in the cost matrix (random cost matrix):

Size: 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10



Solution

This is the cost matrix.

45691345
89898688
76637741
18709819

Subtract row minima

For each row, the minimum element is subtracted from all elements in that row.

3256032(-13)
3302(-86)
3522360(-41)
052801(-18)

Subtract column minima

For each column, the minimum element is subtracted from all elements in that column.

3253032
3002
3519360
049801
(-3)

Cover all zeros with a minimum number of lines

A total of 4 lines are required to cover all zeros.

3253032x
3002x
3519360x
049801x

The optimal assignment

Because there are 4 lines required, an optimal assignment exists among the zeros.

3253032
3002
3519360
049801

This corresponds to the following optimal assignment in the original cost matrix.

45691345
89898688
76637741
18709819

The total minimum cost is 161.


HungarianAlgorithm.com © 2025. All rights reserved.
Part of Echion, KvK 50713795, BTW NL001446762B10.