Solve an assignment problem online

Fill in the cost matrix of an assignment problem and click on 'Solve'. The optimal assignment will be determined and a step by step explanation of the hungarian algorithm will be given.

Fill in the cost matrix (random cost matrix):

Size: 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10

Don't show the steps of the Hungarian algorithm
Maximize the total cost

This is the original cost matrix:

38094739228
77998960497969
1163751195584
70536950353938
7926760791366
48328111512048
82217264749367

Subtract row minima

We subtract the row minimum from each row:

17892719006(-2)
2850401103020(-49)
503145134978(-6)
35183415043(-35)
085605372659(-7)
372170040937(-11)
6105143537246(-21)

Subtract column minima

We subtract the column minimum from each column:

17861719003
285091103017
50045134975
3518315040
085295372656
372139040934
6102043537243
(-31)(-3)

Cover all zeros with a minimum number of lines

There are 7 lines required to cover all zeros:

17861719003  x
285091103017  x
50045134975  x
3518315040  x
085295372656  x
372139040934  x
6102043537243  x

The optimal assignment

Because there are 7 lines required, the zeros cover an optimal assignment:

17861719003
285091103017
50045134975
3518315040
085295372656
372139040934
6102043537243

This corresponds to the following optimal assignment in the original cost matrix:

38094739228
77998960497969
1163751195584
70536950353938
7926760791366
48328111512048
82217264749367

The optimal value equals 165.