Solve an assignment problem online

Fill in the cost matrix of an assignment problem and click on 'Solve'. The optimal assignment will be determined and a step by step explanation of the hungarian algorithm will be given.

Fill in the cost matrix (random cost matrix):

Size: 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10

Don't show the steps of the Hungarian algorithm
Maximize the total cost

This is the original cost matrix:

4470569013
943872091
8718397278
31745045
3982423815

Subtract row minima

We subtract the row minimum from each row:

315743770(-13)
034781182(-9)
690215460(-18)
01414742(-3)
246727230(-15)

Subtract column minima

We subtract the column minimum from each column:

315742660
03477082
690204360
01403642
246726120
(-1)(-11)

Cover all zeros with a minimum number of lines

There are 4 lines required to cover all zeros:

315742660
03477082  x
690204360  x
01403642  x
246726120
x

Create additional zeros

The number of lines is smaller than 5. The smallest uncovered number is 12. We subtract this number from all uncovered elements and add it to all elements that are covered twice:

194530540
03477094
690204372
01403654
12551400

Cover all zeros with a minimum number of lines

There are 5 lines required to cover all zeros:

194530540  x
03477094  x
690204372  x
01403654  x
12551400  x

The optimal assignment

Because there are 5 lines required, the zeros cover an optimal assignment:

194530540
03477094
690204372
01403654
12551400

This corresponds to the following optimal assignment in the original cost matrix:

4470569013
943872091
8718397278
31745045
3982423815

The optimal value equals 82.